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APPLICATION OF HARMONIC ANALYSIS METHOD

TO RESEARCH ON ROTOR AIRLOADS

Qid Zhenhan

(Chinese Helicopter Research and Development Institate)

Abstract-

According to the rotor vortex theory, the rotor circulation and the
rotor induced velocity are developed into Fourier serie The circulation
-distribution along blade spanwise is expressed in Terms of segment-by-

segment linear functions. In consequence the induced velocity equations
and the circulation equations are derived. The engineering application of

the rotor vortex theory is provided. Then the induced velocity and its
harmonic components are obtained to provide a quantitative basis for the

vortex model. For calculating each order harmonic components of the

induced velocity a simplified method is put forward which considers the
effects of each order circulation with neglecting those of higher order.

The method saves the computer time and is of significant benefit.
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GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this
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APPLICATION OF HARMONIC ANALYSIS METHOD TO RESEARCH ON ROTOR
AIRLOADS

Qin Zhenhan
Chinese Helicopter Research and Development Institute

Submitted 31 July 1984

This paper uses the rotor vortex theory
of Professor Wang Shichuen as a basis to develop
the rotor circulation and induced velocity into
Fourier series. The circulation distribution
along blade spanwise is expressed in terms of
segment-by-segment linear functions and the
linear equations for calculating rotor airloads
using the circulation as the unknown are derived.
This has resolved the practical application prob-
lems of the rotor vortex theory that for many
years have not been able to be resolved.

I. Preface

There have been many theories and articles on the aerodynamic

calculations of helicopter rotor-blades, and among which is the

rotor vortex theory of the stationary vortex system of Professor

Wang Shicun [ I ] . But it requires proper modifications when applying

this theory to engineering calculations. Due to the limitation

of resources in the past, the rotor-blade could only be treated
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as a rigid blade, and this is obviously improper. As the application

of computer develops in our country, the elastic deformation (bending,

twisting, etc.) of the rotor-blade can be considered simultaneously

and this can more truthfully reflect the rotor characteristics.

According to Reference [1], this paper develops the rotor circula-

tion and induced velocity into the Fourier series. This manipulation

makes the physical significance between the circulation and its

related parameters become very clear and is rather conducive toward

the understanding of the vortex model and the effects of various

vortex systems. Although the mathematical manipulations are quite

complex, a smaller computer capacity is required. While high accuracy

computations can be conducted on a computer with large capacity,

results can also be obtained using a computer with small capacity.

For example, it only requires half an hour to obtain results that

meet engineering requirements on the DJS-21 computer which only

processes ten-thousand operations per second. Therefore, it is

economical and suitable for engineering applications.

II. Induced Velocity Equations

According to Reference [1], the axial induced velocity at any

point on the rotor hub can be developed into the Fourier series

where v.,(F)-v,.+2.+Gn.,! v.,(F)--v,.+uG.,+,,., o.,,(F)--M,.+zM+V#. .

Here every induced velocity is agitated by the circulation which %

consists of attached vortex, vertical free vortex and horizontal

free vortex.
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According to Reference [2], if the circulation distribution

along spanwise is expressed in terms of segment-by-Segment linear

functions, the induced velocity derived from vertical free vortex

can be expressed asN

VZ-VZ'+ f (VzW.COSn+Vz.uinn#) (2)

whereN -

F*'N

+CACm /&CZ,-C,18)tfj'./.) / .,
p-iU

- CE.C,,e&r - ( 1/2)K7,Cl,r.+ (E.C,.fl)Ar.)/b,

NN
+ Z, C( 1/2)KrC,,M.-EC,, Are+ (E.C,/; )AI'.)lb

ta

+ Z C(C.(m)Ci,+c,(m)C,,z) Ar'..-(C,,Cm) c.FA.)

top

NN

talpZc 6 (c,2, c* )cc,,2xc r..,-(cr,- cicMC2/)r/b

where Kr-1/(KV,), Ar-r. -r., b-

Eand C.[m] are the quantites related to K and the harmonic order T

number m and n. For example

E,- KrnC U
xCOK./c2(m- 1)j)
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where C-( 1 -5iBuI2)/CsIQiI

C is the quantity related to the integration of the super geometrical
jk

function [31

C,( , g, a, 1, , 0)- J"'( lYF~a, 00 Y, ( /))d

For example

C,,,-C,(, , (m + 1 )/2, (m+1)/2, , 0)

The expressions of induced velocities vF and v agitated by the attach-

ed vortex and horizontal free vortex are similar to Equation (2).

III. Circulation Equations

According to Reference [2], the circulation is developed into

Fourier series
N (.

r-r,+ Z (r.osm+r.sim) (3)Mal (3)

where
ro- (a..S12) ,o+(,,+ )+(1),+.

+ {KC(P/2)b.-Fajdy1( e )/dF+(1L/2)a1,dy'(F)fdi;
i-O

r.-(a$/2) V., + .K[ a!+(u/2))(bZ.,-b.l,))dy'(e)/dr

r.- (a.&12) V.+ (K[fb.-+(Pl2)(al-.,-om-.,))dyl(i)IdF ''

(Il1.)Cb., +b].,)dy'(F)IdF-mamJ-i(F))

The circulation distribution along spanwise is expressed in terms

of segment-by-segment linear functions, then the circulation equation

in the form of jo is

4
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NN j

t A, j.01

+ {(1l/2)FBJ1aT- CFB;i + (12)dyi(F)d-r)aT, r,.,

+ ((P./2)B.alTj, - (iJK/2- B,)afT,,)di(i)/drr ,, ,

+ C(l/2)(OLK/2- iB,)oT,- FB.a T.,)d (./Fr t.,
• + OB IATI,- (IAl2) OB 81+ (Pl2)d (F)id Fraj7 Ls ra,,

- (1i2)BIaT(r,., - (IL/2)iB.dyI (i) /dFaT(,I'sr,

- BIML- (IL/z,+)(t%1 , + (a/2,.(iK)il ( 4 )i

(4)

where A-a.-/2l K.-k/(4O),

B,'-B,,f,'y'dF/ -B.( i -Fy(F)), B, -B.,( I -y(F,)),

(F84. 1  es ,v, )/b I - 1

( ,/t -N,+ 1

Bns is the 4 aantity related to B0 , B s and motion parame Irs. "or

example 8,,- A (B+ ,)/{ 2 C(B,/3)( 1 -Ff)+('/Z)( 1 -,)B,)'

where B,- I/( I +A&K,), B,-1/C I +Ar,( I +C))

Filop' "Isp and other circulation equations can be derived according-

ly.

IV. Rotor-Blade Airloads

Each order harmonic component of circulation can be obtained

from the linear algebraic equations with circulation as the unknown

which are derived by substituting the induced velocity equations into

the circulation equations. According to the Zhukovskiy formula, the

airloads per unit rotor-blade length are:

dTldi - (pR/Im,)(w.r) (5)
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where
W.-i+Asin m,.-mass of one blade; r-r,+ Z (F-am* +rwsinm*)

"'.1
Thus, the expressions of each order airloads per unit rotor-blade

length are obtained; and therefore the airloads are obtained.

(dT7"/i), - (PR3/m,) r, + (9/2)r,,)
(dTIdF),.-(PR 3/M,) w,.+(g/2)F.)
(dr~ldi),, - (PR'/m, ) cg r, + Fr,, - (P/z) r.]

(dT,/dP).-(PR3/m,)ur_+ (A/2)([ r . ,-,)

(dT,/di).- (PR'/m.) ,) .+ (9/2)(f .,.- ,)

V. Examples and Discussions

Numerical computations were conducted using the H-34 helicopter

as an example. The calculated values were compared with the measured

values during actual flight and the results are satisfactory; see

Figs. 1 and 2.

Another helicopter with takeoff weight of 14,400 kg and rotor

diameter f 21.3 m was used as an example to calculate each component

of the induced velocity and obtain the curves of the azimuthal varia-

tion of total axial induced velocity'(Fig. 3). Due to the limitation

in space, only the second order components of the induced velocities

which are agitated by separate harmonic components of attached vortex,

vertical free vortex and horizontal free vortex, are given. See

Table 1-3. The obtained harmonic components of the induced velocities

have not yet been seen in any references. They provide a quantitative

basis for the analysis and research of the vortex model.

6
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It is very beneficial to perform example computations when only

considering the same order induced velocity which is agitated by

each order harmonic circulation before the same order, as shown in

Fig. 4. If only the shaded areas are considered, comparison between

the obtained results and the effects to the induced velocity when

the total circulation is considered shows that their numerical values

are very close; see Fig. 5. The computation time, however, is greatly

*- reduced. The higher the order considered, the more distinctive the

effect of reduction of computation time. U

.,
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Fig. 2 . Comparison of the azimuthal variation of dT/dF(N/.) at 1A i0. 2, for r 0. 75
-test$- aclain
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Table I A Thae harimtoniccmet of the induced velocity v tI .0,fr'.s

I -The induce velocit 10- bip boun Xo s Wz -The Xnue vocty - ' bloitdnlvIces,

.25 0 -996 0.5 0.462 0.694
0.35 3 10'2.320.0318 0.937 0. 905
0.500.423 i 0.126 0.-855 0.749

05 0 0.553 0.11 3 0.764 0.629

0.65 0.601 0.0925 I 0.665 0.518
0.75 0 0.568 0.0719 0.550 0.414

:.0 5 .13 0.0536 f 0.433 0.311
0g .All 0.0448 0.338 0.245

Tabtle 2 The harmonic components of the induced velocity vs

P U tOXIs' j,, to- U, X10',8  z gX is" VaX 1 I011

0.25 -. 0127 0..4 -0.502 I 0.0535 -0.0578
035 -0124 0.-143 -0.933 I 0.396 -0.360
0.s -0.1 0t 17 -0.922 I 0.680 -0.533

0.55 -0.212 0135 j -0.811 0.760 -0.564

0.65 -0.233 0.138 I 0.660 J 0.808 -0.569
075 -. 250 41-11 I 0.414 0.830 -0.545

0.65 -0.263 0 Al442 -.216 1 0.833 04.
0.91 -0.268 0 -"39 -0.146 0.832 .399q

8%



Table 3 The harmonic components of the induced velocity vn

0 j w xn)10-
2  I NI.X0 to$ NI,)110-2  &w.xt' UNIEXO x IQ-,M1'

Ois 0 .2342 O.538 -0.5$72 -0. 171 0.00O6l0
-.S -0.132 0.471 -0.280 -0.201 - 0.000109

0. 45 -0.0530 0.342 0.114 -0.240 0.0615
0.5 -0.0282 0.280 0.290 -0.257 0.122

0.65 - 0.00167 0.231 0.450 -0.27S 0.161
cis 0. 0026 0.170 0.52 -0.265 .0.114
9.85 0. 00959 0.130 4.715 -09 O 0.22L
0.95 0.0107 0.100 0.768 -0.2t.$ 0.230

I _~@ 1 ri"/, I , r,

we ,,1, _.II//L l t

Pig.4 Relation betwees the induced velocity ad the Curealatiom in simplified calculation

7IO

IIrmo."

-~~ let 20086"

* 7i. Variatise of dT/dt (N/ur) with azimuth at P -0.27
-simplified ciarsles -- total acelath.

(Xuie Zhe1azhong and Duan Yuzhang took part in the work of thisH
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SOME PROBLEMS IN THE FINITE-DIFFERENCE
COMPUTATION OF THREE-DIMENSIONAL

TRANSONIC FLOWS
Chen Tkmb

(Beijing Indiue of Aerodynanics)

Abstract

The mixed finite-difference relaxation iteration method is applied to
calculation of the wing-body combination with rectangular wings based on
the three-dimensional transonic small-disturbance potential equation in

the cylinder coordinates. Meanwhile, the influences of different computa-
tion regions and relaxation parameters (on subsonic points) on the ranges
of the computed Mach numbers, angles of attack and calculated results

are studied.
It is shown that extending the computation region brings about inc-

reasing the convergence range of the small-disturbance equation. and the
con-ergence rate and computation accuracy would be are enhanced if the
subsonic relaxation parameter is taken to be 1.9.

Also, it is demonstrated that the calculated results differ when the

finite or infinite region is taken as the computation region of the r-direc-
tion. Particularly the distribution of the pressure cooeficients near the
wingtip varies obviously as the incident Mach number becomes larger.
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V

SOME PROBLEMS IN THE FINITE-DIFFERENCE COMPUTATION OF THREE-
DIMENSIONAL TRANSONIC FLOWS

Chen Tiemin

Beijing Institute of Aerodynamics

Submitted 25 January 1985

I. Introduction of Basic Method

1. Three-Dimensional Transonic Small-Disturbance Equation

The three-dimensional transonic small-disturbance equation in

cylindrical coordinates is.

A+ 91"+ --- p 1 (1)

where (P is disturbance potential; Am-0'-(Y+I)ML., 01M2 Y I_'.

is specific heat; M*. is the incident Mach number. If r-direction

is selected as infinite region, through coordinate conversion -
mbr/(I +ar). the infinite region of r is converted to the finite

computation region . Here a and b are constants to be determined.

Now Equation (1) can be rewritten as

12



.,q o+(b -oT11) + b -00'

+ b (b (2)

bN

Then Equations (1) and (2) correspond to the finite and infinite

regions (select proper a and b values) of r respectively.

2. Boundary Conditions (See Fig. 1)

(3)*Muu,

Fig. 1. Boundary surfaces and diagrammatic drawing of model
Key: (1)Vertical plane of symmetry; (2) Upstream plane; (3) Outer
cylindrical surface; (4) Horizontal plane; (5) Downstream plane;
(6) Tail-trace plane.

On the surface of the body: Assume the surface equation of the

body symmetrical to the axes is r=R(x), then the boundary condition

of the tangential flow is

lir (rf,),-R( x)CR'(x)-o usng) (3)

where 0( is the incident attack angle.

13
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On the surface of the wing: Assume the equations of upper and

lower wing surfaces are Z-I,(x, Y) , then the flow along the upper

and lower wing surfaces should satisfy

lir (Wo)-rC/f(x, Y)-a) (4)
1 - 1o4

Here '(x, Y)--n/f(x, YY)iex 0; represents the upper and lower wing sur-

faces.

On the tail-trace surface: It is known from the Kutta condition

that

q'(x, Y, 0.)- (x, Y, 0.)-(y) (5)

There are two conditions on the upstream plane and the outer

cylindrical surface:

(1)If Equation (1) is used, it should satisfy, from the solutions

f of small-disturbance wing lift problems,

"n (r -I-k + )S r, d (6)

where =Vx+0xr:j s is half of the span length.

(2) If Equation (2) is used, the disturbance potential is 0,

i.e., .

9,-0 (7)

There are also two conditions on the downstream plane:

14
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(1) If Equation (1) is used, should satisfy

9(r).- r -( +8 _- ) 2dy (8)

where
P -r-2rycw 9 +y'

(2) If Equation (2) is used, the disturbance velocity

.- 0 (9)

3. Finite-Difference Formula, Finite-Difference Equation and Their

Solutions

This paper uses the variable mixed finite-difference formula

of Murman-Cole, i.e., Yxx at subsonic point uses central finite-

difference; at supersonic point uses incident finite-difference;

r (or P ) and 9-direction both use central finite-difference. The

finite-difference formula at special point (with boundary conditions

substituted):

(1) According to boundary condition (3), it can be obtained on

the surface of the body that:

1I 1 t 2r, +Ar, . T424-9.1

r r1 r1 2 Ar, -(RI - Gsin 0)J (10)

(2) On the upper and lower wing surfaces

r2

15
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(3) On the tail-trace plane, the pressure continuum and Kutta

Condition are applied

1O.,2

Using the above finite-difference formulae, and on the plane

of i=constant and the straight live of k=constant, the algebraic

simultaneous equations with ji,j-l,k, ijk and Oi,j+l,.k as un-

knowns are established. These equations are three-diagonal and can

be solved by the chase method. Assume the solution is 9i' then
the solution after relaxation is

+ (1-- -W) (13)

where W is the relaxation parameter. The subsonic relaxation param-

eter &),in the computation is selected as 1.9 or 0.9; the supersonic

relaxation parameter~ls selected as 0.9. The iteration method is

conducted to solve for the entire flow field. The iteration stops

when the entire flow field satisfies

, - (14)

where Z is the convergence range and is generally selected as

=0. 1xl 0-4 .

.1
The computation formula for pressure coefficient on wing is

c,- -2, (15)

On the surface of the body, the second-order term of the horizontal

disturbance velocity is reserved

(16)

16



II. Example

1. Wing-Body Combination Equation

(1) The wing is a rectangular wing with double-arc airfoil

z-5m bs ) (17)

The airfoil relative thickness ratio =0.06; chord length b=1 is

a reference length; the aspect ratio X=L/b=5.4; L is the span length

including the body.

2. The Body is the Model "AGARD-B" Body, the Equation for the Contour

of the Head is

R(x)-3 (SD+x) -9-D 5) (18)

(-SD<x<ZD)

where D is the diameter of the cylindrical portion of the body.

Assume D=1, when x 2, then R=0.5 and extends into the downstream.

The origin of coordinates is selected at the intersection of

the line connecting the center points of the chord and the body axes.

The finite region of r is marked as I and the infinite region as

II. The sampling points in the x, r (or 2 ) and @-direction are

all distributed at nonequal distance.

III. computation Results

i1. The maximum Mach number and attack angle in the computation

region I are Ma 00= 0 .9 26 and 0=2
° respectively; in the computation

region II they are Ma0 =0.98 and 0 =40 respectively. This indicates

17



that the coordinate conversion q=br/(l+ar) in the r-direction can

increase the range of the calculated Mach number and attack angle

of the small-disturbance equation.

2. Figure 2 gives the comparison curves between the computed

results and the two-variable test results at M aO=0.965, Ok =20 and

y=0.5 (y is the spanwise relative location on the wing cross-section).

This figure shows that the conmputed results in region II are reason-

able.

C,

0

r! /"
o.p/.,, L (3)

Fig. 2. Comparison between computed results and test results
Key: (1) upper surface; (2) lower surface; (3) computed results;
(4) two-dimensional test results.

3. Figure 3 shows that there is difference between the computed

-4results of region I and II. At E =0.lxlO - , when the M is larger,

there is a difference in the chordwise distribution of wing surface

pressure coefficients and it becomes more obvious near the wingtip.

This is because the outer boundary of region I is like a wall, causing

the local Mach number to increase and the absolute value of C on
p

the upper surface to be larger and that for the lower surface to

be smaller.

18



CO

S -o,.S 0 , 0.5o

/ M .- o.go.-O'. -0., X*

-o.4

0.4.

Fig. 3. Influence of computation regions on computed results
Key: (1) upper wing surface; (2) lower wing surface.

4. Figure 4 gives the curves of influence of subsonic relaxation

parameters on computed results. Under the same E, the computed

results at 60 =1.9 is more accurate than that at ) =0.9; its conver-
gence rate is faster. There are similar phenomena in both computation

region I and II. This indicates that, under guaranteed convergence

condition, the larger C4) is selected (> 2), the faster the convergence

rate of computation and the higher the accuracy of data.

C,
-0.4.

,

0.,.4 e.J@ . 13
0.4 .-... s. .o•1'.N' 4

Fig. 4. Influence of relaxation parameters on computed results
Key: (1) upper wing surface; (2) lower wing surface.

SI
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Abstract

A' three-dimensional computation of a jet in a crossflow has been per-

formed on a microcomputer. The SIMPLE method is adopted with some
mod ifications. A special computer code is developed in conformity with the

4mit'ed memiories of the microcomputer. Velocity and presure distributions

are *I ven and compared with the available experimental data satisfacto-

rily.
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NUMERICAL COMPUTATION OF THE THREE-DIMENSIONAL VISCOUS INTERFERENCE
FLOW FIELD OF A VERTICAL JET IN A CROSSFLOW

Pan Huachen and Zhang Shiying
Nanjing Aeronautical Institute

Submitted 1 March 1985

A vertical jet shot out of a flat plate will interfere with a

low speed incident flow parallel to the flat plate (crossflow), caus- V

ing complex flow phenomena to occur. The jet is deflected by the

crossflow, and its velocity is rapidly reduced; the incident flow

is blocked and drawn by the jet (Fig. 1). The jet and the incident

flow interreact with each other causing two symmetrical vortex cores

to develop under the jet.

2
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(2),

Fig. 1. Flow field of a vertical jet interferring with a crossflow
and its computation domain
Key: (1) crossflow; (2) vortex.

The vortex caused by this interference develops along the direction

of the wall surface and it can be used as a means to control the

attach surface layer [ . It can also be applied to heat transfer

engineering and other areas. There have been numerous experimental

[1-41
studies on this kind of flow both in our country and abroad

Due to the difficulties in measurement, it is generally difficult

to obtain detailed data of the entire flow field, especially near

the nozzle. It is impossible to conduct computation using two-dimen-

sional or nonviscous method because of the complexity of the flow;

the full three-dimensional viscous numerical computation method must

be used. This kind of flow possesses strong three-dimensional mixing

effects and needs to use appropriate turbulence model. According

to the principles in References [6, 7], we developed a computer program

and performed computation.
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I. Basic Equations

The basic equation of a three-dimensional, 
steady, incompressible,

Itime-averaged Reynold number turbulent flow in the rectangular coordi-

* nates is: continuity equation

Th o en u q at o w t " ( )

The momentum equation (with the assumption of vortex viscosity)

au.;u~V
ax;A -. xi Oi (2)

D xi;; = D X , D- X1  " X , - ,

where the effective viscosity A e is defined as

(3)

where,$l is the laminar viscosity. #t is the turbulent viscosity

and is determined by the following turbulence model

P,.C.pK*/, (4)

where K is the turbulence kinetic energy. is the dissipation rate

of K and is determined by the following equations

P"' 7," a, ) + G - P*
Ot I OL, D M(5

Pu 1 -- -' )+ (C,G-C,p)-
Dx X1 (x CF. '0XK (6)

where G is the generation rate of the turbulence kinetic energy

x- Oxi) ) (7)

The coefficients used in the equations are adopted from the data

recommended by Reference [81: U

C.-O.09, C,-1.44, C," 1 .92, 04,m , G.=l.3 (8)

Since the above turbulence model is used, p* in Equation (2) is

p*- p +---PK

where 2/3 K can be regarded as turbulent pressure term.
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II. Solution Method

The method used by this paper is based primarily upon the SIMPLE

method~. Said method adopts the iteration solution method. The

three velocity components u, v and w used to solve the x-direction

momentum equation are all old values; u used to solve the y-direction

* momentum equation is a new value; and u and v used to solve the z-

direction momentum equation are new values. It was found during

actual computation that this kind of nonconforming value character

was an important factor which caused divergence in solving the equa-

tion. Therefore, when we were developing the program the newly obtain-

*ed u and v values were temporarily stored and old u, v and w values I
were used to perform iteration for all three momentum equations,

thereby guaranteeing the conforming value character.

In order to increase efficiency and lower cost, the existing

INTEL-86-330 microcomputer was adopted to perform computation. Said

program requires more memory. The example in this paper requires

more than 100 giga bytes in memory at least, and the available memory

space of the said microcomputer is only a little more than 100 K.

* Therefore, during the development of the program the technique of

exchanging with secondary storage was adopted. Every three-dimensional

* group was divided into a dozen or so two-dimensional group and stored

in hard disk. During computation they were called in separately

by a subroutine to take part in the iteration and then restored.

This greatly saved memory space. Yet as a price, the computation

speed dropped about 20 fold.
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III. Example

The experimental conditions in Reference [3] for the incident

flow and geometric data are used. The incident flow velocity is

39 m/sec and jet velocity is 156 m/sec with a velocity ratio of 4.

The symmetry of flow field only considers half of the flow field

cut by the symmetric plane, as shown in Fig. 1. The computation

domain is a box-shaped region with its bottom connected to the flat

plate. One of the sides is the symmetric plane and the other four

sides are the upstream, downstream boundaries and infinite boudnaries,

respectively. The grid is in the form of rectangular coordinates:

x-direction (flow direction) has 20 rows of grid, z-direction (per-

pendicular to the plate) has 16 rows and y-direction has 12 rows

for a total of 3840 grid points (measurement points). In order to

properly simulate the details of flow field near the jet nozzle, I
a variable spacing grid is used to give dense grid near the jet nozzle

and sparse grid for further flow field. Using the nozzle diameter

D as the reference, the upstream boundary is 3.5 D from the center

of the nozzle and the downstream boundary is 8 D from the center

of the nozzle. The z-direction infinite boundary is about 12 D from

the plate and the side infinite boundary is about 5 D from the symmet-

ric plane. The method in Reference [6] is adopted. Six grid points

are used to simulate a semi-circle jet nozzle. Meanwhile the total

area corresponding to the six grid points is made to be in agreement

with the area of the semi-circle jet nozzle.

N
26

j



The upstream boundary defines the incident flow velocity. The.N

normal velocities on the infinite boundary, the symmetric plane bound-

ary and the flat plate are all assumed to be zero. The jet velocity

is defined by the jet nozzle. The gradient of the tangential veloci-

ties v and w on the downstream boundary are assumed to be zero, yet

u is adjusted according to the total flow rate on the basis of its

value on the previous row. The wall surface is processed by adopting

the wall surface function method[8].

The standard for computation convergence is set at when both

the corresponding remainders of the momentum and continuity equations

reach 5%. This example required 90 steps and spent 170 hours on

the microcomputer.

V. Results and Their Discussions

In order to verify the computation, the results are compared

with the test data of Reference [3, 4, 51. Figure 2 shows the velocity

contours on the symmetric plane. In the figure, the line with indexing

points is the jet center line drawn by using the peaks of the contours,

and it can be seen that the line is in good agreement with the test

data. See Fig. 3 for the decay of jet velocity. In the figure,

W is the jet velocity at the jet nozzle, s is the natural coordi-max

nates along the jet, W.i is the jet velocity along s. The computed
j0

velocity decays faster than the test value, but the difference is -

not distinctive and both show that the rate of velocity decay follows

a rule of first small, then large, and again from large back to small. 4

Figure 4 is the projection of vortex core contour on the symmetric
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plane. The vortex core trace derived from the computed values is

more complicated. The low pressure centers basically coincide with

the vortex core contour, otherwise the centripetal force that makes

the air streamlines turn vortically will not be generated. The curve

in Fig. 4 is the projection of the low pressure centers on the symmet-

ric plane, i.e., the approximation of the vortex core contour, and

matches well with the vortex core test values. Figure 5 is the com-

parison of computed values (left half) and test values (right half)

of the pressure coefficient distributions on the flat plate. Judging

from the trend of pressure distributions, the computed values of

pressure rise behind the jet nozzle on the flat plate are faster

than the test values.

aID
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o XW43*SITZ9 (2)

Fig. 2. Velocity distributions and the location of jet center line

on the symmetric plane
Key: (1) test values of Reference [31; (2) test values of Reference
4]. .

28



£ ±B',4 lUE ( 1

6 1 10 1,2
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Fig. 3. Rule of velocity decay on the jet center line
Key: (1) test values of Reference [4].Yi

Fig. 4. Projection of the location of vortex core on the symmetric
plane
Key: (1) test values of Reference [3].

-0.1

( I2 x on l(3)

Fig. 5. Pressure coefficient distribution on the flat plate
Key: (1) Crossflow; (2) Computed values; (3) test values of Reference
(51.
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The three-dimensional viscous flow computation method introduced

by this paper can compute detailed data of the interference flow

field of a vertical jet in an incident flow. The comparison with

test results shows that the computed results are more accurate, espe-

cially the locations of jet contour, vortex core contour, etc. The

fact that the computed jet decay is a little faster and the computed

pressure rise behind the jet nozzle is faster indicates that the

numerical dissipation might be larger, but not enough to cause signif-

icant influence on the prediction of the entire flow field. Therefore,

% the said numerical method can be an effective tool for analyzing

flow field.
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